Digital Control Systems Analysis And Design Phillips | 702b3464802ad208b91715d68bc51921

Reliability and Risk Issues in Large Scale Safety-critical Digital Control Systems

Digital Control System Analysis and Design

Modern Control Systems Analysis and Design

Analysis of Control Systems

Linear Control System Analysis and Design with MATLAB

Sixth Edition

Physiological Control Systems

Model-Based Design for Effective Control System Development

INTRODUCTION TO LINEAR AND DIGITAL CONTROL SYSTEMS

Digital Control Systems Analysis and Design

Digital Control Systems Design

Industrial Digital Control Systems

LMI in Control Systems

Digital Control Systems Analysis

Cloud Control Systems

HVAC Control Systems

Design

Digital Control Systems Analysis and Design

Phillips

Systems Analysis and Design

Modern Control Systems Analysis and Design

Using MATLAB

Discrete-Time Control System Analysis and Design

Digital Control Systems Analysis and Design

Introduction to Time-Delay Systems

Analysis and design of control systems using MATLAB

Discrete-Time Control System Analysis and Design

Modern Control Systems Analysis and Design

Using MATLAB

Digital Control Systems Analysis and Design

Industrial Digital Control Systems

LMI in Control Systems

Cloud Control Systems

HVAC Control Systems

The extraordinary development of digital computers (microprocessors, microcontrollers) and their extensive use in control systems in all fields of applications has brought about important changes in the design of control systems. Their performance and their low cost make them suitable for use in control systems of various kinds which demand far better capabilities and performances than those provided by analog controllers. However, in order really to take advantage of the capabilities of microprocessors, it is not enough to reproduce the behavior of analog (PID) controllers. One needs to implement specific and high-performance model based control techniques developed for computer-controlled systems (techniques that have been extensively tested in practice). In this context identification of a plant dynamic model from data is a fundamental step in the design of the control system. The book takes into account the fact that the association of books with software and on-line material is radically changing the teaching methods of the control discipline. Despite its interactive character, computer-aided control design software requires the understanding of a number of concepts in order to be used efficiently. The use of software for illustrating the various concepts and algorithms helps understanding and rapidly gives a feeling of the various phenomena.

The book reviews developments in the following fields: state-space theory; complex variable methods in feedback system analysis and design; robustness in variable control system design; design study using the characteristic locus method; inverse Nyquist array design method; nuclear boiler control scheme analysis and design; optimal control; control system design via mathematical programming; multivariable design optimisation; pole assignment; nonlinear systems; DDC system design; robust controller design; distributed parameter system control; and decentralised control.

A guide to common control principles and how they are used to characterize a variety of physiological mechanisms The second edition of Physiological Control Systems offers an updated and comprehensive resource that reviews the fundamental concepts of classical control theory and how engineering methodology can be applied to obtain a quantitative understanding of physiological systems. The revised text also contains more advanced topics that feature applications to physiology of nonlinear dynamics, parameter estimation methods, and adaptive estimation and control. The author—a noted expert in the field—includes a wealth of worked examples that illustrate key concepts and methodology and offers in-depth analyses of selected physiological control models that highlight the topics presented. The author discusses the most noteworthy developments in system identification, optimal control, and nonlinear dynamical analysis and targets recent bioengineering advances. Designed to be a practical resource, the text includes guided experiments with simulation models (using Simulink/Matlab). Physiological Control Systems focuses on common control principles that can be used to characterize a broad variety of physiological mechanisms. This revised resource: Offers new sections that explore identification of nonlinear and time-varying systems, and provide the background for understanding the link between continuous-time and discrete-time dynamic models Provides helpful, hands-on experimentation with computer simulation models Contains fully updated problems and exercises at the end of each chapter Written for biomedical engineering students and biomedical scientists, Physiological Control Systems, offers an updated edition of this key resource for understanding classical control theory and its application to physiological systems. It also contains contemporary topics and methodologies that shape bioengineering research today.

Control systems are an integral aspect of modern society and exist across numerous domains and applications. As technology advances more and more, the complexity of such systems continues to increase exponentially. Model-Based Design for Effective Control System Development is a critical source of scholarly information on model-centric approaches and implementations for control and other similar dynamic systems. Highlighting innovative topics such as configuration management, controllability analysis, and modeling requirements, this book is ideally designed for engineers, researchers, academics, project managers, and professionals interested in the design of embedded control systems.

The beginning of the 21st century can be characterized as the time-delay boom leading to numerous important results. The purpose of this book is two-fold, to familiarize the non-expert reader with time-delay systems and to provide a systematic treatment of modern ideas and techniques for experts. This book is based on the course "Introduction to time-delay systems" for graduate students in Engineering and Applied Mathematics that the author taught in Tel Aviv University in 2011-2012 and 2012-2013 academic years. The book is designed to follow the bulk of the material is mathematics and an introduction to control. The book leads the reader from some basic classical results on time-delay systems to recent developments on Lyapunov-based analysis and design with applications to the hot topics of sampled-data and network-based control. The objective is to provide useful tools that will allow the reader not only to apply the existing methods, but also to develop new ones. It should be of interest for researchers working in the field, for graduate students in engineering and applied mathematics, and for practicing engineers. It may also be used as a textbook for a graduate course on time-delay systems.

Page 1/5
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Digital Control Systems Analysis and Design is appropriate for a one semester/two-quarter senior-level course in digital or discrete-time controls. It is also a suitable reference for practicing engineers. This best-selling text places emphasis on the practical aspects of designing and implementing digital control systems. This program presents a better teaching and learning experience—for you and your students. Provide MATLAB programs to students: Short MATLAB programs have been included in many of the examples, which allow students to experiment and learn more skills. Motivate students with running applications that are featured throughout the book: Simple physical systems are introduced in one chapter and then used again later to illuminate more advanced material. Reinforce core concepts with examples and problems: Numerous problems and worked examples help students grasp the text’s concepts. Keep your course current: A new chapter on system identification (Chapter 11) is included in this edition.

Cloud Control Systems: Analysis, Design and Estimation introduces readers to the basic definitions and various new developments in the growing field of cloud control systems (CCS). The book begins with an overview of cloud control systems (CCS) fundamentals, which will help beginners to better understand the depth and scope of the field. It then discusses current techniques and developments in CCS, including event-triggered cloud control, predictive cloud control, fault-tolerant and diagnosis cloud control, cloud estimation methods, and secure control/estimation under cyberattacks. This book benefits all researchers including professors, postgraduate students and engineers who are interested in modern control theory, robust control, multi-agents control. Offers insights into the innovative application of cloud computing principles to control and automation systems Provides an overview of cloud control systems (CCS) fundamentals and introduces current techniques and developments in CCS Investigates distributed denial of service attacks, false data injection attacks, resilient design under cyberattacks, and safety assurance under stealthy cyberattacks

This work presents traditional methods and current techniques of incorporating the computer into closed-loop dynamic systems control, combining conventional transfer function design and state variable concepts. Digital Control Designer – an award-winning software program which permits the solution of highly complex problems – is available on the CD that accompanies this book. The objective of this book is to provide a collection of solved problems on control systems, with an emphasis on practical problems. System functionality is described, the modeling process is explained, the problem solution is introduced, and the derived results are discussed. Each chapter ends with a discussion on applying MATLAB®, LabVIEW, and/or Comprehensive Control to the previously introduced concepts. The aim of the book is to help an average reader understand the concepts of control systems through problems and applications. The solutions are based directly on math formulas given in extensive tables throughout the text.

This important new book bridges the gap between works on classical control and process control, and those dealing with HVAC control at a more elementary level, which generally adopt a qualitative and descriptive control. Both advanced level students and specialist practitioners will welcome the in-depth analytical treatment of the subject presented in this book. It includes signal and communication theory, control of linear systems, and several control architectures such as artificial neural networks, fuzzy logic systems, all of which are given a thorough analytical treatment in the book. First advanced book to provide an analytical treatment of subject Covers all new developments in HVAC control systems Looks at systems both in the UK and abroad

Although LMI has emerged as a powerful tool with applications across the major domains of systems and control, there has been a need for a textbook that provides an accessible introduction to LMIs in control systems analysis and design. Filling this need, LMIs in Control Systems: Analysis, Design and Applications focuses on the basic analysis and design of control systems. Coverage of root locus design and the Fourier transform have also been increased.


This book presents comprehensive coverage of linear control systems along with an introduction to digital control systems. It is designed for undergraduate courses in control systems taught in departments of electrical engineering, electronics and instrumentation, communications, and instrumentation and control, and computer science and engineering. The text discusses the important concepts of control systems, transfer functions and system components. It describes system stability, employing the Hurwitz-Routh stability criterion, root locus technique, Bode plot, and polar and Nyquist plots. In addition, this student-friendly book features in-depth coverage of controllers, compensators, state-space modelling and discrete time systems. KEY FEATURES * Includes a brief tutorial on MATLAB in an appendix to help students learn how to use it for the analysis and design of control systems. * Provides an abundance of worked-out examples and review questions culled from university examination papers. * Gives answers to selected chapter-end questions at the end of the book.

Designed to help learn how to use MATLAB and Simulink for the analysis and design of automatic control systems.

Introduction; Review of continuous control; Introductory digital control; Discrete systems analysis; Sampled-data systems; Discrete equivalents; Design using transform techniques; Design using state-space methods; Multivariable and optimal control; Quantization effects; Sample rate selection; System identification; Nonlinear control; Design of a disk drive servo; a case study; Appendix A: Examples; Appendix B: Tables; Appendix C; A few results from matrix analysis; Appendix D: Summary of facts from the theory of probability and stochastic processes; Appendix E: Matlab functions; Appendix F: Differences between Matlab v5 and v4; References; Index.

This book adopts a systematic view of the control systems in cyber–physical systems including the security control of the optimal control system, security control of the non-cooperative game system, quantify the impact of the Denial-of-Service attacks on the optimal control system, and the adaptive security control of the networked control systems.
Because the cyber-physical system is a hybrid system, it adopts cross layer approach to handle the security control of the CPS. It presents a number of attack models according to the attack scenario and defense facilities, and a number of cross-layer co-design methodologies to secure the control of CPS.

Digital Control Systems Analysis and Design is appropriate for a one semester/two-quarter senior-level course in digital or discrete-time controls. It is also a suitable reference for practicing engineers. This best-selling text places emphasis on the practical aspects of designing and implementing digital control systems. This program presents a better teaching and learning experience—for you and your students. Provide MATLAB programs to students: Short MATLAB programs have been included in many of the examples, which allow students to experiment and learn more skills. Motivate students with running applications that are featured throughout the book: Simple physical systems are introduced in one chapter and then used again later to illuminate more advanced material. Reinforce core concepts with examples and problems: Numerous problems and worked examples help students grasp the text's concepts. Keep your course current: A new chapter on system identification (Chapter II) is included in this edition

"Reliability and Risk Issues in Large Scale Safety-critical Digital Control Systems" provides a comprehensive coverage of reliability issues and their corresponding countermeasures in the field of large-scale digital control systems, from the hardware and software in digital systems to the human operators who supervise the overall process of large-scale systems. Unlike other books which examine theories and issues in individual fields, this book reviews important problems and countermeasures across the fields of software reliability, software verification and validation, digital systems, human factors engineering and human reliability analysis. Divided into four sections dealing with software reliability, digital systems reliability, human reliability and human operators in large-scale digital systems, the book offers insights from professional researchers in each specialized field in a diverse yet unified approach.

The extraordinary development of digital computers (microprocessors, microcontrollers) and their extensive use in control systems in all fields of applications has brought about important changes in the design of control systems. Their performance and their low cost make them suitable for use in control systems of various kinds which demand far better capabilities and performances than those provided by analog controllers. However, in order really to take advantage of the capabilities of microprocessors, it is not enough to reproduce the behavior of analog (PID) controllers. One needs to implement specific and high-performance model based control techniques developed for computer-controlled systems (techniques that have been extensively tested in practice). In this context identification of a plant dynamic model from data is a fundamental step in the design of the control system. The book takes into account the fact that the association of books with software and on-line material is radically changing the teaching methods of the control discipline. Despite its interactive character, computer-aided control design software requires the understanding of a number of concepts in order to be used efficiently. The use of software for illustrating the various concepts and algorithms helps understanding and rapidly gives a feeling of the various phenomena.

Digital Control Applications Illustrated with MATLAB covers the modeling, analysis, and design of linear discrete control systems. Illustrating all topics using the microcomputer implementation of digital controllers aided by MATLAB, Simulink, and FEEDBACK

Thoroughly classroom-tested and proven to be a valuable self-study companion, Linear Control System Analysis and Design: Sixth Edition provides an intensive overview of modern control theory and conventional control system design using in-depth explanations, diagrams, calculations, and tables. Keeping mathematics to a minimum, the book is designed with the undergraduate in mind, first building a foundation, then bridging the gap between control theory and its real-world application. Computer-aided design accuracy checks (CADAC) are used throughout the text to enhance computer literacy. Each CADAC uses fundamental concepts to ensure the viability of a computer solution. Completely updated and packed with student-friendly features, the sixth edition presents a range of updated examples using MATLAB®, as well as an appendix listing MATLAB functions for optimizing control system analysis and design. Over 75 percent of the problems presented in the previous edition have been revised or replaced.

More and more digital devices are being used for information processing and control purposes in a variety of systems applications, including industrial processes, power networks, biological systems and communication networks. This trend has been helped by the advent of microprocessors and the consequent availability of cheap distributed computing power. For those applications where digital devices are used, it is reasonable to model the system in discrete-time. In addition there are other application areas, e.g., econometric systems, business systems, certain command and control systems, environmental systems, where the underlying models are in discrete-time and here discrete-time approaches to analysis and control are the most appropriate. In order to deal with these two situations, there has been a lot of interest in developing techniques which allow us to do analysis, design and control of discrete-time systems. This book provides a comprehensive treatment of discrete time dynamical systems. It covers the topics of modelling, optimization techniques and control design. The book is designed to serve as a text for teaching at the first year graduate level. The material included is organized into eight chapters.

In recent years significant progress has been made in the analysis and design of discrete-data and digital control systems. These systems have gained popularity and importance in industry due in part to the advances made in digital computers for controls and, more recently, in microprocessors and digital signal processors. An introductory text for a senior or graduate course on digital control systems, this text covers the theory and applications of digital control systems, assuming a knowledge of matrix algebra, differential equations, Laplace transforms and the basic principles of continuous-data control systems. Many subjects are new to the Second Edition, most importantly design topics such as disturbance rejection, sensitivity considerations, and zero-ripple deadbeat-response design. In addition, Kuo includes separate discussions on controllability, observability, and stability, expands the discussions of sampling period selection, emphasizes computer-aided solutions, and provides a new and simpler approach to the Nyquist criterion of stability. Each chapter begins with keywords and topics that provide students with an overview of the key topics to be covered. Illustrative examples, many derived from practical systems, are included throughout the text. Numerous exercise problems end each chapter.

Written to inspire and cultivate the ability to design and analyze feasible control algorithms for a wide range of engineering applications, this comprehensive text covers the
A text for a first course in discrete control systems or a first course in digital filters, at senior or first-year graduate level. Covers discrete-time systems and the z-transform, stability analysis techniques, digital controller design, and digital filter structures. The appendices list design eq


An introduction to analysis techniques used in the design of linear feedback control systems with emphasis on both classical and matrix methods. This text presents all design methods in a building-block sequence, including a thorough analysis of first- and second-order systems as well as general state space systems.

Digital controllers are part of nearly all modern personal, industrial, and transportation systems. Every senior or graduate student of electrical, chemical or mechanical engineering should therefore be familiar with the basic theory of digital controllers. This new text covers the fundamental principles and applications of digital control engineering, with emphasis on engineering design. Padali and Visioli cover analysis and design of digitally controlled systems and describe applications of digital controls on a wide range of fields. With worked examples and Matlab applications in every chapter and many end-of-chapter assignments, this text provides both theory and practice for those coming to digital control engineering for the first time, whether as a student or practicing engineer. Extensive Use of computational tools: Matlab sections at end of each chapter show how to implement concepts from the chapter. Frees the student from the drudgery of mundane calculations and allows him to consider more subtle aspects of control system analysis and design. An engineering approach to digital controls: emphasis throughout the book is on design of control systems. Mathematics is used to help explain concepts, but throughout the text discussion is tied to design and implementation. For example coverage of analog controls in chapter 5 is not simply a review, but is used to show how analog control systems map to digital control systems. Review of Background Material: contains review material to aid understanding of digital control analysis and design. Examples include discussion of discrete-time systems in time domain and frequency domain (reviewed from linear systems course) and root locus design in s-domain and z-domain (reviewed from feedback control course). Inclusion of Advanced Topics: in addition to the basic topics required for a one semester senior/graduate class, the text includes some advanced material to make it suitable for an introductory graduate level class or for two quarters at the senior/graduate level. Examples of optional topics are state-space methods, which may receive brief coverage in a one semester course, and nonlinear discrete-time systems. Minimal Mathematics Prerequisites: The mathematics background required for understanding most of the book is based on what can be reasonably expected from the average electrical, chemical or mechanical engineering senior. This background includes three semesters of calculus, differential equations and basic linear algebra. Some texts on digital control require more.

The first German edition of this book appeared in 1972, and in Polish translation in 1976. It covered the analysis and synthesis of sampled-data systems. The second German edition of 1983 extended the scope to design, in particular design for robustness of control system properties with respect to uncertainty of plant parameters. This book is a revised translation of the second German edition. The revisions concern primarily a new treatment of the finite effect sequences and the use of nice numerical proper ties of Hessenberg forms. The introduction describes examples of sampled-data systems, in particular digital controllers, and analyzes the sampler and hold; also some design aspects are introduced. Chapter 2 reviews the modelling and analysis of continuous systems. Pole shifting is formulated as an affine mapping, here some n-w material on fixing some eigenvalues in a design step is included. Chapter 3 treats the analysis of sampled-data systems by state space and z-transform methods. This includes sections on inter sampling behavior, time-delay systems, absolute stability and non synchronous sampling. Chapter 4 treats controllability and reach ability of discrete-time systems, controllability regions for con strained inputs and the choice of the sampling interval primarily under controllability aspects. Chapter 5 deals with observability and constructability both from the discrete and continuous plant output. Full and reduced order observers are treated as well as disturbance observers.

The intent of this book is to emphasize the basics of control system. These basics include transfer function, block diagram, signal flow graph, and the matrix approach in solving simultaneous differential equations. Additionally, they also include Bode plot, realization diagram, and stability analysis. The book also shows digital control system as an extension of analog control system. To illustrate these basics, the author used extensive figures and tables. Each figure consists of sketches and mathematical equations shown on its text. Such an approach minimizes backward referencing from a figure to its text and vice versa. After a careful study of the book, an engineer should be able to design, analyze, or test a control system.

Provides complete coverage of both the Lyapunov and Input-Output stability theories, in readable, concise manner. * Supplies an introduction to the popular backstepping approach to nonlinear control design * Gives a thorough discussion of the concept of input-to-state stability * Includes a discussion of the fundamentals of feedback linearization and related results. * Details complete coverage of the fundamentals of dissipative system's theory and its application in the so-called L2gain control problem, for the first time in an introductory level textbook. * Contains a thorough discussion of nonlinear observers, a very important problem, not commonly encountered in textbooks at this level. * An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Praise for Previous Volumes "This book will be a useful reference to control engineers and researchers. The papers contained cover well the recent advances in the field of modern control theory." -IEEE GROUP CORRESPONDENCE "This book will help all those researchers who valiantly try to keep abreast of what is new in the theory and practice of optimal control." -CONTROL.